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The contents of the supplemental material are organized corresponding to the
order of the main text. Included in the supplemental material are derivations
of mathematical results and details of the specific models mentioned in the
main text.

We have also posted the data files and computer codes for the models dis-
cussed, at http://www.lassp.cornell.edu/sethna/Sloppy. For the KaiC,
PC12, and segment polarity models, this includes:

(1) Equations in LATEX, Python, and C
(2) SBML (system biology markup language) files
(3) Parameter ensembles
(4) Best-fit Hessian and JT J , and their eigenvectors and eigenvalues

Introduction

Hessian at best fit parameters

In the introduction we mention that “the curvature of the cost surface about
a best fit set of parameters is described by the Hessian Hmn.” Examining the
behavior of Hmn is a standard method for nonlinear least squares models when
fitting data. Formally, Hmn is written as:

Hmn =
∂2C

∂θmθn
=

∑

i

∂ri

∂θm

∂ri

∂θn
+ ri

∂2ri

∂θmθn
. (S1)
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If the model fits the data well so that ri ≈ 0 (or perfectly, Ref. (32) in the
main text) then

Hmn(θ∗) ≈
∑

i

∂ri

∂θm

∂ri

∂θn
= (JT J)mn. (S2)

If H and the cost are used (as in this review) to describe changes in model
behavior from θ∗, then r ≡ 0 at θ∗ and Equation (S2) is exact. Notice also that
H reflects the sensitivity of the fit to changes in parameters; in fact, its inverse
is the covariance matrix. The diagonal elements of the covariance matrix are
proportional to the uncertainties in the parameters, while the off-diagonal
elements are estimates of parameter uncertainty correlations.

Figure 1: Sloppiness in the mapping of chemotypes to dynatypes

Shown in Figure 1 of the main text is the mapping of chemotypes C to dy-
natypes D. The mapping between C and D is described with J and “J−1”. It
is typical that dim(C) # dim(D), since there are typically more data points
constraining the dynatype than there are parameters defining a chemotype.
Therefore, the inverse of J is not well-defined. In Figure 1, the gray ellipse in
C represents the inverse image of the ε-ball, Bε, in D under J . That is, “J−1”
acting on Bε is the set {c ∈ C s.t. J · c ∈ Bε}.

Note also that the stiff and sloppy eigendirections in C and their images in D
can be described by the singular value decomposition of the Jacobian J . Since
λn are eigenvalues of JT J ,

√
λn are the singular values of J . Furthermore,

writing J = U
∑

V T , we see that the columns of V are stiff/sloppy eigenpa-
rameters in C (shown in red in the figure), and the columns of U are images
of stiff and sloppy eigenparameters (divided by λn) in D.

Environmental robustness and sloppiness

Figure 2: Sloppy parameter distributions: dependence on external conditions

In Figure 2 of the main text, the plane onto which the ensembles are projected
is the one that aligns best with the stiffest eigenparameter of each of the four
ensembles. To accomplish this, the vertical and horizontal axes in Figure 2
are, respectively, the first and second singular vectors in the singular value
decomposition of the set of stiffest eigenparameters {v25

0 ,v30
0 ,v35

0 ,vAll
0 }. In a

way analogous to principal components analysis, this gives the plane that
passes through the origin and comes closest to passing through the heads of
unit vectors pointing in the stiffest eigendirections.
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Each ensemble of parameter sets shown in Figure 2 is chosen from the proba-
bility distribution corresponding to the local quadratic approximation of the
cost near the best-fit parameters θ∗:

P (θ∗ + ∆θ) ∝ exp(−∆θJT J∆θ/2). (S3)

This local approximation to the cost was used to generate the ensembles in-
stead of the full nonlinear cost function due to difficulties in generating equi-
librated ensembles: the thin curving manifolds of allowable chemotypes for
sloppy models can be notoriously difficult to populate. But this is not impos-
sible; efforts are still underway, and if equilibrated ensembles are found, they
will be posted to the website mentioned above.

KaiC phosphorylation subnetwork model

In the main text, we use as an example a portion of the circadian rhythm model
presented in Ref. (12) of the main text. We implement the subnetwork that
van Zon et al. hypothesize must have intrinsically temperature-independent
rates: that which controls the phosphorylation of KaiC alone. This subnet-
work models the experimental measurements of KaiC phosphorylation in the
absence of KaiA and KaiB (Ref. (11) of the main text), in which the phospho-
rylation of KaiC does not oscillate, but decays at a temperature-compensated
rate in the range from 25 to 35◦ C (see circles in Figure S2).

The subnetwork involves an active and inactive state of KaiC, along with
six phosphorylation sites for each state, as depicted in Figure S1. Including
forward and backward “flip” rates between active and inactive states along
with (de)phosphorylation rates that are each constant for the two states, there
are 18 independent rates. To assess the temperature dependence, we assume
that each transition rate follows an Arrhenius law, with constant energy barrier
E and prefactor α: the ith rate is αieEi/kT . This then gives a 36-dimensional
chemotype space in which to search for solutions.

Temperature-independent solutions can be trivially found in this space if the
energy barriers are chosen to be small, since this produces rates that are
inherently weakly dependent on temperature. In order to avoid this trivial
temperature compensation, we apply a prior that favors solutions with phos-
phorylation energy barriers near the expected E0 = 23 kT , similar to those
found in other kinases (Ref. (46) in the main text) and appropriate for reac-
tions that break covalent bonds. We choose this prior as a quartic in log E:

Cprior =
25

2

[
log

(
E

E0

)]4

. (S4)

The form was chosen to severely penalize barriers less than 10 kT , but to
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Fig. S1. KaiC phosphorylation subnetwork. This schematic depicts the KaiC
network used as an example in the main text. It is a portion of the full circadian
rhythm model presented in Ref. (12) of the main text. The numbers represent the
degree of phosphorylation, and the two columns represent two different conforma-
tional states, “active” and “inactive.” The labels on the arrows represent reaction
rates for changing among the phosphorylation and conformation states. Each confor-
mation state has one phosphorylation and one dephosphorylation rate, independent
of the degree of phosphorylation. Each of the 14 “flip” rates between conformational
states (bi and fi) is allowed to vary independently. This gives a total of 18 reaction
rates.

be reasonably flat around E0; other prior choices would presumably perform
similarly.

Using this method, we find that it is possible to fit the experimental data even
with (de)phosphorylation rates that are strongly temperature-dependent. The
phosphorylation and dephosphorylation rates that provided a best fit to all
temperatures simultaneously were all above 21 kT . We used Bayesian Monte-
Carlo sampling of chemotype space to create an ensemble of parameter sets
that each produce phosphorylation dynamics that match the experimental
data at 25, 30, and 35◦ C. As explained above, our ensemble has not yet sam-
pled all the space available, but we still find many such acceptable chemotypes.
The minimum (de)phosphorylation rate for the ensemble was just under 10
kT , so the prior worked as designed to confine the barriers to physically rea-
sonable values. Figure S2 shows the output of the model over this ensemble
of parameter sets compared with the experimental data from Ref. (11) of the
main text.
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Fig. S2. KaiC phosphorylation network: temperature-compensated out-
put. Shown is the net phosphorylation of KaiC over time, comparing experimental
data (circles with error bars, from Ref. (11) in the main text) with output from
an ensemble of chemotypes (filled colored regions, showing the mean plus or minus
one standard deviation over the ensemble for the net phosphorylation at each time–
point). Different colors correspond to different temperatures: blue = 25◦, green =
30◦, red = 35◦. Note that the chemotypes describe the data well at all three tem-
peratures, even though the rates are strongly dependent on temperature.

We mention in a footnote that, in our model, “successful chemotypes favor de-
phosphorylation in the active state and phosphorylation in the inactive state.”
This can be seen in the ratio of phosphorylation to dephosphorylation rates,
shown in Figure S3, for the ensemble of successful chemotypes. Note that most
members of the ensemble have an inactive state with higher phosphorylation
rate than dephosphorylation, and vice versa for the active state. This matches
with an intuitive temperature-compensation mechanism: with flip rates that
are also temperature-dependent, higher temperatures can lead to more KaiC
being in the inactive state, leading to a slower overall decay in phosphorylation
that compensates for the speedup in reaction rates.

Figure 3: Sloppy model eigenvalues

The PCA shown in Figure 3 column SP PCA was produced after taking log-
arithms of the parameter values that von Dassow et al. used in their analysis.
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Fig. S3. KaiC phosphorylation network: temperature-compensation mech-
anism. This plot shows the ratios of phosphorylation rates to dephosphorylation
rates for the active and inactive states – the distribution of kps/kdps is shown in
blue for the active state, and the distribution of k̃ps/k̃dps is shown in green for the
inactive state (see Figure S1 for definitions of rate constants). The distribution is
over the same (non-equilibrated) ensemble as was used to generate Figure S2. Note
that phosphorylation is favored in the inactive state, while dephosphorylation is
favored in the active state. This suggests a temperature-compensation mechanism,
as described in the text.

This measures parameter fluctuations in terms of fractional changes in pa-
rameter, rather than absolute sizes of fluctuations – allowing fluctuations in
parameters with different units, for example, to be compared. The parameters
used in column SP were chosen (logarithmic or otherwise) as defined by the
original authors. Taking logarithms and/or changing units does not typically
change the qualitative spectra of sloppy models, as their spectra already span
so many decades.
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Chemotype robustness and sloppiness

Derivation of robustness equation

In the main text (MT), the robustness is defined as

Rc =
∏

λn>λcrit

√
λcrit

λn
. (MT 2)

We now proceed to derive this result. We measure robustness as the fraction
of mutations of a given size δ in C (chemotype space) that do not change
the behavior beyond a given threshold (survival after a mutation), which we
designate as an ε-ball around the optimum in D (dynatype space). Therefore
we want an estimate of the fraction of the δ-ball in C that maps into the
ε-ball in D. It is difficult to calculate this geometrically, since we would need
to find the volume of an ellipsoid intersecting a sphere. Fortunately, for sloppy
systems, the λi vary over many orders of magnitude, so we can simplify the
calculation by smearing the δ-ball and ε-ball into Gaussians. Namely, we say
a mutation ∆θ in C has probability e−(∆θ)2/2δ2

/(
√

2πδ)N , and the probability
of “survival” in D is given by e−r2/2ε2 . We then measure the robustness as the
overall probability P (δ, ε) of surviving after a mutation:

Rc = P (δ, ε)

=

(
1√
2πδ

)N ∫

C
d∆θ exp(−(∆θ)2/2δ2) exp(−(∆θ)T JT J(∆θ)/2ε2)

=
∏

n

1
√

1 + λn δ2/ε2
. (S5)

For sloppy systems, λ varies over many orders of magnitude. Notice that if
λn # ε2/δ2, its component in the product will be close to 1, and if λn ( ε2/δ2,

we can approximate the components in the product as
√

ε2/δ2λn. Therefore,

using our definition λcrit ≡ ε2/δ2 we can approximate this formula as:

Rc ≈
∏

λn>ε2/δ2

√
ε2

δ2λn
=

∏

λn>λcrit

√
λcrit

λn
, (S6)

with small corrections for eigenvalues λn ≈ ε2/δ2. Since this result agrees with
the “slab” argument given in the main text for hard walls, we see that hard
ε-balls and hard δ-balls will have approximately the same amount of overlap
as Gaussians.
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Robustness, evolvability, and sloppiness

Derivation of chemotype evolvability

In the main text, we provide a formula for the “maximum fitness change among
mutations of size δ in chemotype space”

ec(F, θ) =
√

FT JJTFδ (MT 3)

which we derive here using a Lagrange multiplier. To derive this, we use the
definition of the chemotype evolvability as the maximum response r · F in R
for moves in C of size |∆θ| = δ:

ec(F, θ) = max
|∆θ|=δ

(r · F). (S7)

Next, notice that

r · F = (J∆θ) · F =
∑

i

∑

α

FiJiα∆θα. (S8)

We find the optimal ∆θ using a Lagrange multiplier Λ. With (∆θ)2 = δ2 as
our constraint, we maximize

FiJiα∆θα + Λ((∆θ)2 − δ2) = FiJiα∆θα + Λ(∆θβ∆θβ − δ2) (S9)

where we use the Einstein summation convention (summing over repeated
indices). Differentiating with respect to ∆θα, we can find the change ∆θmax

giving the maximum response:

∆θmax
α =

FjJjα

2Λ
(S10)

and hence

(∆θmax)2 =
FiJiαJjαFj

4Λ2
= δ2, (S11)

which implies

Λ2 =
FT JJTF

4δ2
. (S12)

Therefore, the evolvability is:

ec(F, θ) = FiJiα∆θmax
α =

FiJiαFjJjα

2Λ
(S13)

=
FT JJTF√
FT JJTF

δ =
√

FT JJTF δ.
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RMS dynatype evolvability

In Equation (5), to measure overall evolvability, we defined Ec(θα) as a root-
mean-square (RMS) average over a uniform (hyper)spherical distribution of

environmental forces F in dynatype space. We use the RMS
√
〈ec(F, θα)2〉

rather than the average 〈ec(F, θα)〉 because the RMS definition has an elegant
result in terms of the eigenvalues λi of JT J :

Ec(θα)2 = 〈ec(F, θα)2〉F = 〈FT JJTFδ2〉F

=
∑

i

∫
λiF 2

i dNF
∫

dNF
δ2

=
∑

i

λi〈F 2
i 〉 δ2 =

∑
i λi〈F2〉

N
δ2

=
Tr(JT J)〈F2〉

N
δ2 ≈ Tr(H)〈F2〉

N
δ2. (S14)

Therefore, the overall evolvability is directly related to the trace of the Hessian:

Ec(θα) =

√
Tr(H)〈F2〉

N
δ. (MT 5)

Our measures of robustness and evolvability depend upon our level of de-
scription, just as for Wagner’s genotype and phenotype evolvabilities of RNA
sequences (Ref. (8) of the main text). Our choice of an isotropic distribution
of selective dynatype forces F is not intended as an accurate representation of
actual selective forces at the phenotype level, but as an exhaustive study of
all possible forces at the dynatype level of description.

Information about phenotypic selective pressures might suggest a different dis-
tribution of dynatype forces F. Indeed, this formalism provides a mechanism
for coupling maps across scales, which is an important unsolved problem. Just
as the genotype-to-chemotype (G → C) and chemotype-to-dynatype (C → D)
maps are many-to-one, so is the dynatype-to-phenotype map (D → P ). In the
segment polarity model, for example, one might construe the phenotype as the
steady-state pattern, whereas the dynatype will include information about all
transient paths to that steady state. This is also closely analogous to measuring
evolvability of RNA sequences by counting distinct folded structures (Ref. (8)
of the main text), as many different structures may be equally nonfunctional
at the higher level of biological phenotype. Ultimately, understanding the na-
ture of the complex D → P maps will be required to estimate evolvability
using more realistic distributions of selective dynatypic forces F.
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Figure 4: Evolvability and robustness in a sloppy system

When calculating the chemotype robustness Rc, we have a choice to make for
the value of λcrit (see Equation 2). This choice corresponds to setting the ratio
of the size of acceptable changes in dynatype ε to the typical size of mutations
δ in chemotype space: λcrit = ε2/δ2. Equivalently, λcrit sets a cutoff between
stiff and sloppy eigenvalues, since we assume that, in D space, the image of
the δ-ball fully overlaps with the ε-ball in sloppy directions (with eigenvalues
below λcrit), and it extends far beyond the edge of the ε-ball in stiff directions
(with eigenvalues above λcrit).

In calculating Rc for the inset of Figure 4 in the main text, we chose λcrit as the
fourth stiffest eigenvalue of JT J at the best fit parameters. This matches with
the idea that there are only a few stiff directions that appreciably constrain pa-
rameters in chemotype space: the eigenvalues are spaced by roughly factors of
three (Figure 3), meaning mutations in sloppier directions in chemotype space
quickly become irrelevant in dynatype space. The choice of λcrit within a rea-
sonable range (between, say, the second stiffest and eighth stiffest eigenvalue
of JT J) does not qualitatively change the plot of evolvability vs. robustness.
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